R0957

Time : 3 Hours

M.Voc. DEGREE EXAMINATION, APRIL - 2024

Second Semester

Software Development

PRINCIPLES OF COMPUTER NETWORKS AND CYBER SECURITY

(CBCS – 2022 onwards)

	Maximum : 75 Marks
Part A	$(10 \times 1 = 10)$

Answer **all** the following objective questions by choosing the correct options.

- 1. Which of the following computer network is built on the top of another network? (CO1, K1)
 - (a) overlay network (b) prime network
 - (c) prior network (d) chief network
- 2. ARPANET stands for ———. (CO1, K1)
 - (a) Advanced Research Project Automatic Network
 - (b) Advanced Research Programmed Auto Network
 - (c) Advanced Research Project Automatic Network
 - (d) Advanced Research Project Authorized Network

3.	How	error detection and correction is done?	(CO2, K3)
	(a)	By passing it through equalizer	
	(b)	By passing it through filter	
	(c)	By amplifying it	
	(d)	By adding redundancy bits	
4.	Fini	te state machines are used for ———.	(CO2, K1)
	(a)	deterministic test patterns	
	(b)	algorithmic test patterns	
	(c)	random test patterns	
	(d)	pseudo random test patterns	
5.	Inte	rnet traffic is directed efficiently using -	
			(CO3, K2)
	(a)	Routing Algorithms	(CO3, K2)
	(a) (b)	Routing Algorithms Using Repeaters	(CO3, K2)
			(CO3, K2)
	(b)	Using Repeaters	(CO3, K2)
6.	(b) (c) (d)	Using Repeaters Using Additional Devices	
6.	(b) (c) (d)	Using Repeaters Using Additional Devices Using Cables	
6.	(b) (c) (d)	Using Repeaters Using Additional Devices Using Cables	
6.	(b) (c) (d) Two	Using Repeaters Using Additional Devices Using Cables broad categories of congestion control are -	
6.	 (b) (c) (d) Two (a) 	Using Repeaters Using Additional Devices Using Cables broad categories of congestion control are - Open-loop and Closed-loop	

 $\mathbf{2}$

7.		\mathbf{is}	a	type	of	security	mecha	nism	used	to
	authenticat	e	us	sers	and	d device	s on	a	netwo	rk.
								((CO4, I	X4)

- (a) Encryption(b) Firewall(c) Access control(d) IDS/IPS
- 8. Which of the following is an objective of network security? (CO4, K4)
 - (a) Confidentiality (b) Integrity
 - (c) Availability (d) All of the above
- 9. In asymmetric key cryptography, the private key is kept by (CO5, K2)
 - (a) sender
 - (b) receiver
 - (c) sender and receiver
 - (d) all the connected devices to the network
- 10. Message authentication code is also known as (CO5, K2)
 - (a) key code
 - (b) hash code
 - (c) keyed hash function
 - (d) message key hash function

3

Part B $(5 \times 5 = 25)$

Answer all the questions not more than 500 words each.

11. (a) Describe the usage of networks in detail. (CO1, K1)

 \mathbf{Or}

(b)	Write short notes on ARPANET.	CO1, K	(1)
-----	-------------------------------	--------	-----

12. (a) What are the four methods used in framing? Explain. (CO2, K3)

Or

- (b) Explain about simplex stop and wait protocol for a noisy channel in detail. (CO2, K3)
- 13. (a) Write about approaches of congestion control. (CO3, K2)

Or

(b) Compare multicast and broadcast routing.

(CO3, K2)

14. (a) Write in detail about image processing attacks. (CO4, K4)

Or

(b) Write short notes on vulnerabilities. (CO4, K4)

4

15.	(a)	Discuss about requirements of symmetric encryption. (CO5, K2)
		Or
	(b)	Write the overview of simple hash functions. (CO5, K2)
		Part C $(5 \times 8 = 40)$
А	nswei	r all the questions not more than 1000 words each.
16.	(a)	Illustrate architecture of network with neat sketch.
		(CO1, K1)
		Or
	(b)	Write a detailed note on physical layer transmission
		media. (CO1, K1)
17.	(a)	Explain in detail about types of Error-correcting codes. (CO2, K1)
		Or
	(b)	Discuss about slide window protocols in detail. (CO2, K1)
18.	(a)	Describe any two design issues in detail. (CO3, K2)
		Or
	(b)	Explain about packet fragmentation in detail. (CO3, K2)
		5 R0957

19. (a) Write about attacks, services and mechanisms in network security. (CO4, K4)

 \mathbf{Or}

(b)	Discuss the types of threads in detail.	(CO4, K4)
-----	---	-----------

20. (a) Explain any two substitution techniques in detail. (CO5, K2)

 \mathbf{Or}

(b) Discuss about security of Hash function and MACs. (CO5, K2)

6

R0958

M.Voc. DEGREE EXAMINATION, APRIL - 2024

Second Semester

Software Development

FUNDAMENTALS OF OPERATING SYSTEM

(CBCS – 2022 onwards)

Time : 3 Hours

Maximum : 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** the following objective type questions by choosing the correct option.

- 1. Which one of the following is not a real time operating system? (CO1, K1)
 - (a) RTLinux (b) Palm OS
 - (c) QNX (d) VxWorks
- 2. Which of the following is not the type of System Call? (CO1, K1)

- (b) File management
- (c) Device management
- (d) Registers

⁽a) Process control

- 3. CPU scheduling is the basis of ———. (CO2, K2)
 - (a) Multiprogramming operating systems
 - (b) Larger memory sized systems
 - (c) Multiprocessor systems
 - (d) None of the mentioned
- 4. A thread is sometimes called as ———. (CO2, K2)
 - (a) A light weight process
 - (b) Heavy weight process
 - (c) Both (a) and (b)
 - (d) None of these
- 5. The ——— in operating systems is an issue that arises when shared resources are accessed by concurrent processes. (CO3, K3)
 - (a) Critical section problem
 - (b) Entry Section Problem
 - (c) Both (a) and (b)
 - (d) None of these
- 6. _____ are integer variables that are used to control access to shared resources in operating systems.(CO3, K3)
 - (a) Semaphores (b) Deadlock
 - (c) Synchronization (d) Scheduling
 - $\mathbf{2}$

7.	RAG	G stands for ———.	(CO4, K4)			
	(a)	Resource Allocation Graph				
	(b)	Resource Allocate Graph				
	(c)	Research Allocation Graph				
	(d)	Research Allocate Graph				
8.	Circ	cular Wait forms ———— chain.	(CO4, K4)			
	(a)	Circular (b) Linear				
	(c)	Both (a) and (b) (d) None of these				
9.		———— is a process of swapping a	a process			
		porarily to a secondary memory from nory.	the main (CO5, K5)			
	(a)	Swapping				
	(b)	Paging				
	(c)	Memory allocation				
	(d)	None of these				
10.		———— is a computing phenomenon the en virtual memory is used.	at occurs (CO5, K5)			
	(a)	Thrashing (b) Paging				
	(c)	Demand paging (d) Swapping				
		3	R0958			

Part B $(5 \times 5 = 25)$

Answer **all** the questions not more than 500 words each.

11.	(a)	Write a note on Batch System. (CO1, K1)			
		Or			
	(b)	Differentiate Real time system and Distributed system. (CO1, K1)			
12.	(a)	What are the advantages of Inter Process Communication? (CO2, K2)			
		Or			
	(b)	Illustrate Process Control Block with neat Sketch. (CO2, K2)			
13.	(a)	Write a note on Critical Section Problem. (CO3, K3)			
\mathbf{Or}					
	(b)	Compare multiple processor, Realtime, thread Scheduling. (CO3, K3)			
14.	(a)	What are the four necessary conditions for deadlock? (CO4, K4)			
Or					
	(b)	Discuss Various Techniques to recover from			

deadlock. (CO4, K4)

4

15. (a)	Compare Document Based Middleware and File					
	Systems Based Middleware. (CO5, K5)					
	Or					
(b)	Write a note on Demand Paging. (CO5, K5)					
	Part C $(5 \times 8 = 40)$					
Answe	er all the questions not more than 1000 words each.					
16. (a)	Explain the working procedure of System Calls and					
	it's types. (CO1, K2)					
	Or					
(b)	Discuss about OS Services in detail. (CO1, K2)					
17. (a)	Describe the various Concept of Scheduling					
	Algorithms. (CO2, K2)					
Or						
(b)	Explain the types of Thread with neat sketch.					
	(CO2, K2)					
18. (a)	Illustrate about Semaphores in detail. (CO3, K3)					
	Or					
(b)	What are two stack solutions in critical section					
	problem? Explain. (CO3, K3)					
	5 R0958					

19. (a) How to avoid deadlock using Bankers Algorithm? Explain. (CO4, K4)

Or

- (b) Write the steps for preventing Deadlock. (CO4, K4)
- 20. (a) Describe about continuous Memory Allocation with example. (CO5, K5)

Or

(b) Illustrate about various types of Middleware in detail. (CO5, K5)

6